**Activity 3.2 Unit Conversion**

Introduction

Engineers of all disciplines are constantly required to work with measurements of a variety of quantities – length, area, volume, mass, force, time, temperature, electric current, etc. It is often necessary to be able to express those measurements in different units. For example, when designing a water distribution piping system, it is important to know how much water pressure is lost as the fluid flows through the pipe. The pressure loss depends on the length of the pipe which is often measured in

In other situations you may be forced to work between the SI and U S Customary measurement systems. Say, for example, that as a U S company, your product is manufactured and produced based on U S Customary units. However, a European company would like a proposal to incorporate your system into their existing assembly line, the characteristics of which are based on SI units. You must be able to convert between the two systems in order to provide a proposal for a design which includes your company’s U S product.

In this activity you will convert measurements among units in both the U S Customary System and the SI system, and you will convert quantities between the two systems of measurement. You will also gain experience with converting units among units that are not specific to one measurement system (such as people and tanks of water) and use the skills you learn to solve everyday problems (such as calculating the cost of gas to travel a given distance).

Engineers of all disciplines are constantly required to work with measurements of a variety of quantities – length, area, volume, mass, force, time, temperature, electric current, etc. It is often necessary to be able to express those measurements in different units. For example, when designing a water distribution piping system, it is important to know how much water pressure is lost as the fluid flows through the pipe. The pressure loss depends on the length of the pipe which is often measured in

*miles*. One formula that is sometimes used to calculate pressure loss requires that the pipe length be input in*feet*. Therefore, it is necessary to be able to convert miles to feet.In other situations you may be forced to work between the SI and U S Customary measurement systems. Say, for example, that as a U S company, your product is manufactured and produced based on U S Customary units. However, a European company would like a proposal to incorporate your system into their existing assembly line, the characteristics of which are based on SI units. You must be able to convert between the two systems in order to provide a proposal for a design which includes your company’s U S product.

In this activity you will convert measurements among units in both the U S Customary System and the SI system, and you will convert quantities between the two systems of measurement. You will also gain experience with converting units among units that are not specific to one measurement system (such as people and tanks of water) and use the skills you learn to solve everyday problems (such as calculating the cost of gas to travel a given distance).

Conclusion

1. Why would you have to know how to convert measurements when looking at a technical drawing?

Because there would be a conversion chart or construction lines

2. How can you use units help you solve a problem?

You can use units co you know what you're gonna be measuring with